Designing PBL Cases Around Classroom Objectives
S. Mo1, A. Thompson1, D. Schaefer2, M. Beam2
1 PRISM Program, Emory University, Atlanta, GA 30322 2 Milton High School, Alpharetta, GA 30004

Background
- Problem-based learning (PBL) techniques are being used in the classroom to promote critical thinking, self-directed learning, and hands-on experience with scientific concepts (Herreid, 1994).
- These techniques can also be expanded to meet additional classroom objectives, such as introducing PBL, designing experiments, critically evaluating media sources and assessing student knowledge.

Study Objectives
- In this study, we designed and implemented PBL cases to meet the classroom objectives of:
 - Introducing the process of PBL
 - Giving students tools to critically evaluate sources of data
 - Assuring student understanding of chemical concepts

Methodology
- Setting:
 - Introductory high school chemistry (grade 10)
 - Honors Chemistry (grade 10)
 - Classroom size: 28 students (maximum)
 - Demographics: Suburban Atlanta, Georgia high school

- Implementation:
 - Groups of 3-5 students
 - Average of 5.55-minute class periods (range from 2-7 class periods)
 - 3 cases/semester
 - 3 facilitators per class (teacher, graduate student, undergraduate student)

- Classroom Objectives Addressed Through PBL:
 - Introduction to PBL
 - Introduction to topics in general chemistry
 - Laboratory methods
 - Critical assessment of media/internet sources
 - Evaluation of understanding of chemical concepts
 - Scientific writing and communication skills

Case 1: Spring Break Gone Wild
Topic: Students are trapped in a cave and must decide whether there is another oxygen to survive
Classroom Objective: Introduction to PBL process
Learning Objectives: dimensional analysis, percent composition, scientific notation, chemical reactions, stoichiometry, and moles
Student Outcomes: Students worked in groups to determine the amount of oxygen in the cave, turned in study questions and presented their results in a narrative case epilogue.

Case 2: Chemical Spill at Milton High School
Topic: A mysterious chemical is dispersed at MHS and students must identify and separate the chemical.
Classroom Objectives: Methods research and laboratory experiment design
Learning Objective: separation techniques, percent yield and physical vs. chemical properties
Student Outcomes: Students took the perspective of hazardous materials chemists and wrote how to identify and contain the material.

Case 3: Ungulates and Gases Case
Topic: Cows are trapped in a trailer and must figure out how to displace gas to survive
Classroom objectives: Exam assessment of student knowledge of chapter topics.
Learning objectives: gas laws, Boyle’s law, Charles’ Law, dimensional analysis and gas constants
Student Outcomes: Students solved case as part of the end of chapter exam. Students worked in groups of three to solve the case problem during the exam, using PBL methods.

Case 4: Mystery in Loveland, CO
Topic: Students are hospitalized after passing out and students must identify the cause of their illness.
Classroom Objectives: Critical assessment of media and internet resources
Learning Objectives: acid/base chemistry and solution chemistry
Student Outcomes: Students took the role of health care workers to diagnose the symptoms. Students discussed sources of medical information on the internet and assessed information sources for reliability.

Findings
- Students were able to demonstrate an understanding of the PBL process, design their own laboratory experiments, assess media sources, and answer exam questions based on PBL cases.
- Students were most receptive to the cases that involved hands-on, laboratory experiments and these cases allowed them to more fully appreciate the chemical concepts.
- From a teacher’s perspective, PBL can be designed around learning objectives and can meet classroom needs, but does require planning for the assessment of these goals.
- Student Evaluations:
 - “Case work is better than the normal lecture classes.”
 - “We get to be creative in what we’re doing.”
 - “The cases were very useful because we got to do research for ourselves and find stuff out for ourselves.”
 - “When I’m doing case work and I’m having to figure out learning issues and which are pertinent to the case and figure things out, I am a lot more attentive. When I find out which, learning issues are the important ones that I need, I seem to remember them a lot better.”

Conclusions
- PBL cases can be designed to apply to many different high school classroom objectives.
- PBL cases can be used to introduce students to scientific methods and improve communications skills.
- Cases helped to stimulate student interest in these areas as well, by making chemical concepts relevant to the students’ experience.

Literature Cited

Acknowledgements
This material is based upon work supported by the Emory University PRISM program (www.prism.emory.edu), which is funded by the GK-12 program of the National Science Foundation, under Award #DGE0231900.
*Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or Emory University.